Notes on 2.3 (Newton's method)

Newton's Method

Description:

another root finding algorithm for a function $f(x)$

Algorithm:

let p_{0} be a guess.
let $p_{i}=p_{i-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}$

Intuition

pretend f was linear:
$f(x)=f\left(p_{0}\right)+f^{\prime}\left(p_{0}\right)\left(x-p_{0}\right)$
solve for $f(x)=0$
get $x=-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}+p_{0}$
If this didn't work we pretend it is linear from this new point.

Theorem 2.6

If $f \in C^{2}([a, b]), f(p)=0, f^{\prime}(p) \neq 0$, then there exists $\delta>0$ such that if $p_{0} \in[p-\delta, p+\delta)$, then Newton's method converges.

Note: this theorem is not very helpful.

proof of theorem 2.6

1. let $g(x)=x-\frac{f(x)}{f^{\prime}(x)}$, so we are now just studying iterations of $g(x)$
2. need to check conditions of fixed point convergence of g
a. $f^{\prime}(p) \neq 0, f^{\prime} \in C^{1}$, therefore near $p, f^{\prime}(x) \neq 0$, therefore we aren't dividing by 0 , so $g \in$ C^{0} near p
b. $g^{\prime}(x)=1-\frac{f^{\prime}(x)^{2}-f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}$, therefore $g \in C^{1}$ near p and $g^{\prime}(p)=0$, therefore g^{\prime} is small near p
c. since g^{\prime} is small near p, then g maps an interval into itself (think about how the graph is flat)
3. apply theorem about fixed point convergence of g.

Secant method

a variation of Newton's method that doesn't involve computing derivatives of f.

Algorithm

begin with two guesses p_{0}, and p_{1}
then $p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)\left(p_{n-1}-p_{n-2}\right)}{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}$

Intution

just replace derivative with discrete approximation of derivative.

